Motor deficits following dorsal corticospinal tract transection in rats: voluntary versus skilled locomotion readouts
نویسندگان
چکیده
Following spinal cord injury, severe deficits result from damages to ascending and descending tracts, such as the corticospinal tract (CST) which is highly relevant for the motor execution in humans. Unfortunately, no curative treatment is available and intensive efforts are deployed in animal models, such as the CST transection model, to identify interventions providing functional regeneration after spinal cord injury. The CatWalk XT is a system for multi-parameter gait analysis of voluntary locomotion. In this study, the performance of the CatWalk XT for monitoring of functional deficits associated with dorsal CST lesion in rats was compared to skilled locomotion tests. Motor deficits associated with dorsal CST transection could be reliably monitored over seven weeks based on skilled locomotion testing, i.e. Horizontal Ladder Walk and Grid Walk. The collateral lesion to the overlaying gracile and cuneate funiculi occurring during dorsal CST transection resulted in slight hyposensitivity and proprioceptive deficit, which likely contributed to the lowered performance in skilled locomotion. In contrast, parameters of voluntary locomotion were not significantly affected by dorsal CST transection. Finally, an abnormal adduction reflex was detected immediately after lesion of the CST and could be conveniently used to confirm successful CST lesion in rats of experimental groups. The functional relevance of the dorsal CST in locomotion of rats is not as prominent as compared to in humans and thus challenging the motor execution is mandatory to reliably investigate CST function. A detailed analysis of voluntary walking using the CatWalk XT is not adequate to detect deficits following dorsal CST lesion in rats.
منابع مشابه
Corticospinal tract transection permanently abolishes H-reflex down-conditioning in rats.
Previous studies have shown that corticospinal tract (CST) transection, but not transection of other major spinal cord tracts, prevents down-conditioning of the H-reflex, the electrical analog of the spinal stretch reflex. This study set out to determine whether the loss of the capacity for H-reflex down-conditioning caused by CST transection is permanent. Female Sprague-Dawley rats received CS...
متن کاملProbable corticospinal tract control of spinal cord plasticity in the rat.
Descending activity from the brain shapes spinal cord reflex function throughout life, yet the mechanisms responsible for this spinal cord plasticity are poorly understood. Operant conditioning of the H-reflex, the electrical analogue of the spinal stretch reflex, is a simple model for investigating these mechanisms. An earlier study in the Sprague-Dawley rat showed that acquisition of an opera...
متن کاملEphA4-mediated ipsilateral corticospinal tract misprojections are necessary for bilateral voluntary movements but not bilateral stereotypic locomotion.
In this study, we took advantage of the reported role of EphA4 in determining the contralateral spinal projection of the corticospinal tract (CST) to investigate the effects of ipsilateral misprojections on voluntary movements and stereotypic locomotion. Null EphA4 mutations produce robust ipsilateral CST misprojections, resulting in bilateral corticospinal tracts. We hypothesize that a unilate...
متن کاملAAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury.
Conditional genetic deletion of phosphatase and tensin homolog (PTEN) in the sensorimotor cortex of neonatal mice enables regeneration of corticospinal tract (CST) axons after spinal cord injury (SCI). The present study addresses three questions: (1) whether PTEN knockdown in adult rats by nongenetic techniques enables CST regeneration, (2) whether interventions to enable CST regeneration enhan...
متن کاملElectrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control.
Partial injury to the corticospinal tract (CST) causes sprouting of intact axons at their targets, and this sprouting correlates with functional improvement. Electrical stimulation of motor cortex augments sprouting of intact CST axons and promotes functional recovery when applied soon after injury. We hypothesized that electrical stimulation of motor cortex in the intact hemisphere after chron...
متن کامل